论文标题
利用触觉反馈以提高数据质量和数量的深度模仿学习模型
Leveraging Haptic Feedback to Improve Data Quality and Quantity for Deep Imitation Learning Models
论文作者
论文摘要
从演示中学习是一种教授机器人新技能的经验丰富的技术。数据质量和数量在使用从人类示范中收集的数据训练的模型的性能中起着关键作用。在本文中,我们通过对人类示威者的实时触觉反馈来增强现有的远程流动数据收集系统;我们观察到收集到的数据吞吐量以及使用与数据训练的模型的自主策略进行的改进。我们的实验测试床是一个移动操纵器机器人,它用闩锁手柄打开了门。对八个真实会议室门的遥控数据收集的评估发现,增加触觉反馈改善了数据吞吐量增加了6%。我们还使用收集的数据来培训六个基于图像的深模型学习模型,三个带有触觉反馈,三个没有它。这些模型用于实现与数据收集过程中使用的相同类型的机器人类型的自动开门。来自收集数据的模仿学习模型的政策,而人类示威者收到的触觉反馈的平均表现要比其对同行的触觉反馈表现出了11%的训练,该对应者接受了无触觉反馈的数据,这表明数据收集过程中提供的触觉反馈提供了改善的自主政策。
Learning from demonstration is a proven technique to teach robots new skills. Data quality and quantity play a critical role in the performance of models trained using data collected from human demonstrations. In this paper we enhance an existing teleoperation data collection system with real-time haptic feedback to the human demonstrators; we observe improvements in the collected data throughput and in the performance of autonomous policies using models trained with the data. Our experimental testbed was a mobile manipulator robot that opened doors with latch handles. Evaluation of teleoperated data collection on eight real conference room doors found that adding haptic feedback improved data throughput by 6%. We additionally used the collected data to train six image-based deep imitation learning models, three with haptic feedback and three without it. These models were used to implement autonomous door-opening with the same type of robot used during data collection. A policy from a imitation learning model trained with data collected while the human demonstrators received haptic feedback performed on average 11% better than its counterpart trained with data collected without haptic feedback, indicating that haptic feedback provided during data collection resulted in improved autonomous policies.