论文标题
学习通过梯度匹配来注释零件细分
Learning to Annotate Part Segmentation with Gradient Matching
论文作者
论文摘要
最先进的深神经网络的成功在很大程度上取决于存在大规模标签的数据集,这些数据集非常昂贵且耗时。本文着重于通过使用预训练的gan生成高质量的图像并使用自动注释者标记生成的图像来解决半监督的零件分割任务。特别是,我们将注释者学习作为学习对学习的问题。给定预先训练的gan,注释者学会了将对象部分标记为一组随机生成的图像,以便在这些合成图像上培训的零件分割模型及其预测的标签在一组手动标记的图像的少量验证集中获得了低分割误差。我们进一步将这个嵌套环优化问题减少到一个简单的梯度匹配问题,并通过迭代算法有效地解决它。我们表明,我们的方法可以从广泛的标记图像中学习注释,包括真实图像,生成的图像,甚至是分析渲染的图像。我们的方法通过半监督零件分割任务进行评估,当标记的示例的数量极为有限时,可以显着优于其他半监督竞争者。
The success of state-of-the-art deep neural networks heavily relies on the presence of large-scale labelled datasets, which are extremely expensive and time-consuming to annotate. This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN and labelling the generated images with an automatic annotator. In particular, we formulate the annotator learning as a learning-to-learn problem. Given a pre-trained GAN, the annotator learns to label object parts in a set of randomly generated images such that a part segmentation model trained on these synthetic images with their predicted labels obtains low segmentation error on a small validation set of manually labelled images. We further reduce this nested-loop optimization problem to a simple gradient matching problem and efficiently solve it with an iterative algorithm. We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images. Our method is evaluated with semi-supervised part segmentation tasks and significantly outperforms other semi-supervised competitors when the amount of labelled examples is extremely limited.