论文标题

部分可观测时空混沌系统的无模型预测

Linear maps as sufficient criteria for entanglement depth and compatibility in many-body systems

论文作者

Lewenstein, Maciej, Müller-Rigat, Guillem, Tura, Jordi, Sanpera, Anna

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Physical transformations are described by linear maps that are completely positive and trace preserving (CPTP). However, maps that are positive (P) but not completely positive (CP) are instrumental to derive separability/entanglement criteria. Moreover, the properties of such maps can be linked to entanglement properties of the states they detect. Here, we extend the results presented in [Phys. Rev A 93, 042335 (2016)], where sufficient separability criteria for bipartite systems were derived. In particular, we analyze the entanglement depth of an $N$-qubit system by proposing linear maps that, when applied to any state, result in a bi-separable state for the $1:(N-1)$ partitions, i.e., $(N-1)$-entanglement depth. Furthermore, we derive criteria to detect arbitrary $(N-n)$-entanglement depth tailored to states in close vicinity of the completely depolarized state (the normalized identity matrix). We also provide separability (or $1$- entanglement depth) conditions in the symmetric sector, including for diagonal states. Finally, we suggest how similar map techniques can be used to derive sufficient conditions for a set of expectation values to be compatible with separable states or local-hidden-variable theories. We dedicate this paper to the memory of the late Andrzej Kossakowski, our spiritual and intellectual mentor in the field of linear maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源