论文标题
Hugenholtz-派恩斯关系和狂犬耦合二进制玻色系统的临界温度
Hugenholtz -- Pines relations and the critical temperature of a Rabi coupled binary Bose system
论文作者
论文摘要
使用理论场高斯近似,我们在低温下研究了拉比耦合的二元bose系统。我们已经派出了延伸的Hugenholtz-考虑了一种身体相互作用(例如Rabi耦合),并研究了Bose -Einstein冷凝物过渡的临界温度$ T_C $。我们已经表明,由于这种交互作用而导致的$ t_c $的变化不能超过$ \ sim 60 \%$,并且随着参数$ω_r/t_ {c}^{0} $的增加而到达高原,其中$ω_r$是coupling的强度,$ t_ {c}^= 0} $是$ the $ ns $ ns ys $ ns $ ns ys $ ns ys $ ns ys $ ns ys $ ns ys $ ns ys $ nes $ ns ys $ nes $ ns $ ns Systond = 0 ns $ nes $ ns Systond ns ys Systond ns ys Systond ns ys Systond ns ys Systone = 0。此外,转变始终是积极的,不取决于一个身体相互作用的迹象。
Using a theoretical field Gaussian approximation we have studied Rabi coupled binary Bose system at low temperatures. We have derived extended Hugenholtz - Pines relations taking into account one body interaction (e.g. Rabi coupling) and studied the critical temperature $T_c$ of Bose-Einstein condensate transition. We have shown that, the shift of $T_c$ due to this interaction can not exceed $\sim 60 \%$ and goes to a plateau with increasing the parameter $Ω_R/T_{c}^{0}$, where $Ω_R$ is the intensity of the coupling and $T_{c}^{0}$ is the critical temperature of the system with $Ω_R=0$. Moreover, the shift is always positive and does not depend on the sign of the one body interaction.