论文标题
有限样本FDR控制
Near-optimal multiple testing in Bayesian linear models with finite-sample FDR control
论文作者
论文摘要
在高维变量选择问题中,统计学家经常寻求设计控制错误发现率(FDR)的多个测试程序,同时同时识别更多相关变量。假设已知的协变量分布,模型-X方法(例如仿冒品和条件随机测试)实现了有限样本FDR控制的主要目标。但是,这些方法是否也可以实现最大化发现的次要目标仍然不确定。实际上,设计程序以发现具有有限样本FDR控制的更多相关变量是一个很大程度上的问题,即使在最简单的线性模型中也是如此。 在本文中,我们针对具有各向同性协变量的高维贝叶斯线性模型开发了近乎最佳的多重测试程序。我们介绍了Model-X程序,即使模型被弄错了,可以证明可以从有限样品中控制频繁的FDR,并且当数据遵循贝叶斯线性模型时,并发出了近距离的功率。我们提出的程序POEDCE包含了三种关键成分:后期期望,蒸馏有条件的随机测试(DCRT)和本杰米尼 - 霍赫伯格(Benjamini-Hochberg)手术(EBH)。 POEDCE的最佳猜想是基于其渐近性真实正面比例(TPP)和错误发现比例(FDP)的启发式计算,该计算由统计物理学以及广泛的数值模拟的方法支持。我们的结果将贝叶斯线性模型建立为比较各种多重测试程序的功率的基准。
In high dimensional variable selection problems, statisticians often seek to design multiple testing procedures that control the False Discovery Rate (FDR), while concurrently identifying a greater number of relevant variables. Model-X methods, such as Knockoffs and conditional randomization tests, achieve the primary goal of finite-sample FDR control, assuming a known distribution of covariates. However, whether these methods can also achieve the secondary goal of maximizing discoveries remains uncertain. In fact, designing procedures to discover more relevant variables with finite-sample FDR control is a largely open question, even within the arguably simplest linear models. In this paper, we develop near-optimal multiple testing procedures for high dimensional Bayesian linear models with isotropic covariates. We introduce Model-X procedures that provably control the frequentist FDR from finite samples, even when the model is misspecified, and conjecturally achieve near-optimal power when the data follow the Bayesian linear model. Our proposed procedure, PoEdCe, incorporates three key ingredients: Posterior Expectation, distilled Conditional randomization test (dCRT), and the Benjamini-Hochberg procedure with e-values (eBH). The optimality conjecture of PoEdCe is based on a heuristic calculation of its asymptotic true positive proportion (TPP) and false discovery proportion (FDP), which is supported by methods from statistical physics as well as extensive numerical simulations. Our result establishes the Bayesian linear model as a benchmark for comparing the power of various multiple testing procedures.