论文标题

动态复杂的光磁全息图

Dynamic complex opto-magnetic holography

论文作者

Makowski, Michal, Bomba, Jaroslaw, Frej, Antoni, Kolodziejczyk, Mateusz, Sypek, Maciej, Shimobaba, Tomoyoshi, Ito, Tomoyoshi, Kirilyuk, Andrei, Stupakiewicz, Andrzej

论文摘要

计算机生成的全息图具有动画,三维外观,长期以来一直吸引着我们的想象力,这是通往带有双向自然视差的真正沉浸式展示的道路。通过液晶调节剂和高分辨率,已经实现了可更新3D图像的令人印象深刻的进展,但是在光敏材料中正在记录准静态全息图。但是,基于矩阵计算和比特平面写作,当前的范式将很难解决实时,大区域全息图的内存需求和计算负载。在这里,我们在实验上展示了一种概念上新颖的,整体计算的整体方法,并使用最小的计算机存储器使用最少的计算机记忆,对计算机生成的动态全息图的重复写入而无需傅立叶变换。我们使用具有飞秒激光脉冲的铁磁性膜中的全息图案的超快光磁记录,这是由单个全息镜的在线硬件计算驱动的。磁性介质的强度 - 阈值性质允许根据拟议的圆形弯曲相编码编码,对样品上任意局部磁斑的逐点切换,提供复杂的调制和对称的调制和对称的衍射顺序,并对肉种性地重新构造的3-D图像中的上限衍射阶和对对称性的抑制作用。

Computer-generated holograms with their animated, three-dimensional appearance have long appealed to our imagination as the path towards truly immersive displays with bi-directional natural parallax. Impressive progress in updateable 3-D imagery has been achieved with liquid crystal modulators and high-resolution, but quasi-static holograms are being recorded in photosensitive materials. However, the memory requirements and computational loads of real-time, large-area holography will be hard to tackle for several decades to come with the current paradigm based on a matrix calculations and bit-plane writing. Here, we experimentally demonstrate a conceptually novel, holistic approach to serial computation and repeatable writing of computer-generated dynamic holograms without Fourier transform, using minimal amounts of computer memory. We use the ultrafast opto-magnetic recording of holographic patterns in a ferrimagnetic film with femtosecond laser pulses, driven by on-the-fly hardware computation of a single holographic point. The intensity-threshold nature of the magnetic medium allows sub-diffraction-limited, point-by-point toggling of arbitrarily localized magnetic spots on the sample, according to the proposed circular detour-phase encoding, providing complex modulation and symmetrical suppression of upper diffractive orders and conjugated terms in holographically reconstructed 3-D images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源