论文标题
部分可观测时空混沌系统的无模型预测
Geometry of Rounding
论文作者
论文摘要
事实证明,四舍五入是理论计算机科学中的基本工具。通过观察$ \ mathbb {r}^d $的舍入和分区是等效的,我们介绍了以下自然分区问题,我们称之为{\ em隔离的超立方体分区问题}:给定的$ k \ in \ in \ mathbbbb {n}单元超振件使得在\ mathbb {r}^d $中的每个点$ p \,其封闭的$ε$ -Neighborhood(在$ \ ell _ {\ elfty} $ norm中)在最多$ k $ hypercubes上相交吗? 我们对该分区问题进行了全面研究。我们证明,对于\ mathbb {n} $中的每$ d \,都有一个明确的(有效计算的)$ \ mathbb {r}^d $的超立方体分区,其中$ k = d+1 $和$ε= \ frac = \ frac {1}} {2DD} $。我们通过证明$ k = D+1 $的值(对于任何$ε$)的价值(包括HyperCube分区)的广泛类别是最好的(对于任何$ε$)。我们还研究了参数$ε$的最佳性,并证明该宽类中具有$ k = d+1 $的任何分区,必须具有$ε\ leq \ leq \ frac {1} {2 \ sqrt {d}} $。这些界限意味着文献中存在某些确定性的圆形方案的局限性。此外,该通用界限基于目前已知的立方体数量的较低界限,并且对该界限的改进将对我们的边界产生改善。 尽管我们的工作是出于理解四舍五入算法的愿望而动机,但我们的主要概念贡献之一是引入{\ em隔离的HyperCube分区问题},这与数学家在各种超管分区/euclidean Space的euclidean Space的各种高管分区/瓷砖上的悠久历史非常吻合。
Rounding has proven to be a fundamental tool in theoretical computer science. By observing that rounding and partitioning of $\mathbb{R}^d$ are equivalent, we introduce the following natural partition problem which we call the {\em secluded hypercube partition problem}: Given $k\in \mathbb{N}$ (ideally small) and $ε>0$ (ideally large), is there a partition of $\mathbb{R}^d$ with unit hypercubes such that for every point $p \in \mathbb{R}^d$, its closed $ε$-neighborhood (in the $\ell_{\infty}$ norm) intersects at most $k$ hypercubes? We undertake a comprehensive study of this partition problem. We prove that for every $d\in \mathbb{N}$, there is an explicit (and efficiently computable) hypercube partition of $\mathbb{R}^d$ with $k = d+1$ and $ε= \frac{1}{2d}$. We complement this construction by proving that the value of $k=d+1$ is the best possible (for any $ε$) for a broad class of ``reasonable'' partitions including hypercube partitions. We also investigate the optimality of the parameter $ε$ and prove that any partition in this broad class that has $k=d+1$, must have $ε\leq\frac{1}{2\sqrt{d}}$. These bounds imply limitations of certain deterministic rounding schemes existing in the literature. Furthermore, this general bound is based on the currently known lower bounds for the dissection number of the cube, and improvements to this bound will yield improvements to our bounds. While our work is motivated by the desire to understand rounding algorithms, one of our main conceptual contributions is the introduction of the {\em secluded hypercube partition problem}, which fits well with a long history of investigations by mathematicians on various hypercube partitions/tilings of Euclidean space.