论文标题
连续选择拉格朗日子空间
Continuous selection of Lagrangian subspaces
论文作者
论文摘要
我们研究了设定值图的连续选择,该图将矢量空间上的每种偏斜双线性形式都带到其相应的最大各向同性子空间集。在合适的格拉曼(Grassmann)歧管的舒伯特细胞方面,应用于建立完全可解决的谎言代数的Vergne偏振下骨的连续性。
We study continuous selections of the set-valued map that takes every skew-symmetric bilinear form on a vector space to its corresponding set of maximal isotropic subspaces. Applications are made to establishing continuity properties of the Vergne polarizing subalgebras of completely solvable Lie algebras in terms of Schubert cells of suitable Grassmann manifolds.