论文标题

部分可观测时空混沌系统的无模型预测

Projection inference for high-dimensional covariance matrices with structured shrinkage targets

论文作者

Mies, Fabian, Steland, Ansgar

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Analyzing large samples of high-dimensional data under dependence is a challenging statistical problem as long time series may have change points, most importantly in the mean and the marginal covariances, for which one needs valid tests. Inference for large covariance matrices is especially difficult due to noise accumulation, resulting in singular estimates and poor power of related tests. The singularity of the sample covariance matrix in high dimensions can be overcome by considering a linear combination with a regular, more structured target matrix. This approach is known as shrinkage, and the target matrix is typically of diagonal form. In this paper, we consider covariance shrinkage towards structured nonparametric estimators of the bandable or Toeplitz type, respectively, aiming at improved estimation accuracy and statistical power of tests even under nonstationarity. We derive feasible Gaussian approximation results for bilinear projections of the shrinkage estimators which are valid under nonstationarity and dependence. These approximations especially enable us to formulate a statistical test for structural breaks in the marginal covariance structure of high-dimensional time series without restrictions on the dimension, and which is robust against nonstationarity of nuisance parameters. We show via simulations that shrinkage helps to increase the power of the proposed tests. Moreover, we suggest a data-driven choice of the shrinkage weights, and assess its performance by means of a Monte Carlo study. The results indicate that the proposed shrinkage estimator is superior for non-Toeplitz covariance structures close to fractional Gaussian noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源