论文标题

石墨烯/1T-TAS $ _2 $异质结构触发的旋转轨道和交换接近耦合。

Spin-orbit and exchange proximity couplings in graphene/1T-TaS$_2$ heterostructure triggered by a charge density wave

论文作者

Szałowski, Karol, Milivojević, Marko, Kochan, Denis, Gmitra, Martin

论文摘要

可以从定制扭曲角度的角度探索基于石墨烯的范德华异质结构中电子带的近端诱导的精美特征和电子带的自旋质量。在这里,我们研究石墨烯状态的旋转轨道耦合和交换耦合工程,在1T-TAS $ _2 $的接近度中,不是触发扭曲,而是在1T-TAS $ _2 $ _2 $ - 一个现实的低温阶段中的电荷密度波。使用密度函数理论和有效模型,我们发现1T-TAS $ _2 $中电荷密度波的出现显着增强了石墨烯中的Rashba自旋轨道分裂,并通过与常规扭曲倾向的场景相似的明显Rashba Angle倾斜了旋转质地。此外,在电荷密度波相中,部分填充的TA $ d $ band导致平面磁性顺序的自发出现,该磁内磁顺序通过从1T-TAS $ _2 $侵蚀到石墨烯,因此,同时沿着旋转器叠加了Spin-Orbit,还可以交换coupling coupling coupling coupling coupling coupling coupling coupling coupling coupling coupling coupling coupling coupling coupling coupling Coupling coupling coupling coupling coupling coupling coupling coupling coupling coupling效果。为了描述这种复杂的接近度景观,我们开发了一种有效的模型,并提供了一组最小的参数,可以很好地再现由第一原理计算预测的所有光谱特征。从概念上讲,电荷密度波提供了一个非常有趣的旋钮,可以控制电子状态的良好特征,并为叠加的接近效果量身定制 - 毫无扭曲的互助效果。

Proximity-induced fine features and spin-textures of the electronic bands in graphene-based van der Waals heterostructures can be explored from the point of tailoring a twist angle. Here we study spin-orbit coupling and exchange coupling engineering of graphene states in the proximity of 1T-TaS$_2$ not triggering the twist, but a charge density wave in 1T-TaS$_2$-a realistic low-temperature phase. Using density functional theory and effective model we found that the emergence of the charge density wave in 1T-TaS$_2$ significantly enhances Rashba spin-orbit splitting in graphene and tilts the spin texture by a significant Rashba angle-in a very similar way as in the conventional twist-angle scenarios. Moreover, the partially filled Ta $d$-band in the charge density wave phase leads to the spontaneous emergence of the in-plane magnetic order that transgresses via proximity from 1T-TaS$_2$ to graphene, hence, simultaneously superimposing along the spin-orbit also the exchange coupling proximity effect. To describe this intricate proximity landscape we have developed an effective model Hamiltonian and provided a minimal set of parameters that excellently reproduces all the spectral features predicted by the first-principles calculations. Conceptually, the charge density wave provides a highly interesting knob to control the fine features of electronic states and to tailor the superimposed proximity effects-a sort of twistronics without twist.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源