论文标题

调整三维拓扑代码的偏差噪声

Tailoring three-dimensional topological codes for biased noise

论文作者

Huang, Eric, Pesah, Arthur, Chubb, Christopher T., Vasmer, Michael, Dua, Arpit

论文摘要

量身定制的拓扑稳定器代码已显示出在偏见的Pauli噪声下表现出很高的存储阈值错误率,并提高了子阈值的性能。三维(3D)拓扑代码可以允许几个优点,包括非克利福德逻辑门的横向实现,单发解码策略,在分裂代码的情况下并行化解码以及分形晶格代码的构建。在此激励的情况下,我们量身定制3D拓扑代码,以提高保利噪声下的存储性能。我们提出了各种3D拓扑代码的Clifford变形,因此它们在无限偏见的Pauli噪声下显示出$ 50 \%$的阈值错误率。我们的示例包括Cubic晶格上的3D表面代码,Checkboard晶格上的3D表面代码,该代码将其借助带有单一解码器的子系统代码,3D颜色代码以及X-Cube型号,例如X-Cube模型,Sierpinski模型和HAAH代码。我们将信念传播与有序统计解码器(BP-OSD)一起研究有限偏见的阈值错误率。我们还为3D表面代码提供了一个旋转的布局,该布局在适当的边界条件下大约使用了相同代码距离的物理Qubit数量的一半。在此旋转的布局上施加副本的周期性维度会导致逻辑运算符在无限偏见和相应的$ o(n)$的逻辑运算符和逻辑失败率的相应$ \ exp [-o(n)] $子阈值缩放率,其中$ n $是代码中物理量的$ n $。即使由于存在$ O(1)$低利率Pauli错误的逻辑表示,因此这种缩放量不稳定,此类表示形式的数量仅对Clifford命名的代码进行多个尺度缩放,从而导致增强的有效距离。

Tailored topological stabilizer codes in two dimensions have been shown to exhibit high storage threshold error rates and improved subthreshold performance under biased Pauli noise. Three-dimensional (3D) topological codes can allow for several advantages including a transversal implementation of non-Clifford logical gates, single-shot decoding strategies, parallelized decoding in the case of fracton codes as well as construction of fractal lattice codes. Motivated by this, we tailor 3D topological codes for enhanced storage performance under biased Pauli noise. We present Clifford deformations of various 3D topological codes, such that they exhibit a threshold error rate of $50\%$ under infinitely biased Pauli noise. Our examples include the 3D surface code on the cubic lattice, the 3D surface code on a checkerboard lattice that lends itself to a subsystem code with a single-shot decoder, the 3D color code, as well as fracton models such as the X-cube model, the Sierpinski model and the Haah code. We use the belief propagation with ordered statistics decoder (BP-OSD) to study threshold error rates at finite bias. We also present a rotated layout for the 3D surface code, which uses roughly half the number of physical qubits for the same code distance under appropriate boundary conditions. Imposing coprime periodic dimensions on this rotated layout leads to logical operators of weight $O(n)$ at infinite bias and a corresponding $\exp[-O(n)]$ subthreshold scaling of the logical failure rate, where $n$ is the number of physical qubits in the code. Even though this scaling is unstable due to the existence of logical representations with $O(1)$ low-rate Pauli errors, the number of such representations scales only polynomially for the Clifford-deformed code, leading to an enhanced effective distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源