论文标题
使用GPRY使用高斯工艺的快速,强大的贝叶斯推断
Fast and robust Bayesian Inference using Gaussian Processes with GPry
论文作者
论文摘要
我们介绍了具有中等数量参数的一般(非高斯)后期的快速贝叶斯推断的GPRY算法。 GPRY不需要任何预训练的特殊硬件,例如GPU,旨在作为传统蒙特卡洛方法的贝叶斯推论的替换。我们的算法基于生成对数 - 寄生虫的高斯过程替代模型,该模型由支持向量机分类器的辅助,该分类器排除了极端或非有限值。与传统的蒙特卡洛推论相比,一种主动学习方案使我们能够将所需后验评估的数量减少两个数量级。我们的算法允许对最佳位置的后验进行并行评估,从而进一步降低了壁式锁定时间。我们使用后验的特性在主动学习方案和GP先验的定义中显着提高了性能。特别是,我们在不同维度上解释了后验的预期动力学范围。我们针对许多合成和宇宙学示例测试模型。当可能性的评估时间(或理论可观察到的计算)是秒数的范围时,GPRY优于传统的蒙特卡洛方法。对于一分钟以上的评估时间,它可以在几天内使用传统方法进行推断。 GPRY作为开源Python软件包(PIP安装GPRY)分发,也可以在https://github.com/jonaselgammal/gpry上找到。
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.