论文标题
在Turán的HyperCube数量上
On the Turán number of the hypercube
论文作者
论文摘要
1964年,Erds提出了估计$ d $ d $二维超立方体$ q_d $的Turán数量的问题。由于$ q_d $是具有最高度$ d $的两部分图,因此它遵循Füredi和Alon,Krivelevich,Sudakov的结果,$ \ mathrm {ex}(ex}(n,q_d)= o_d(n^{2-1/d})$。 Sudakov和Tomon的最新总体结果意味着稍强的绑定$ \ Mathrm {ex}(n,q_d)= o(n^{2-1/d})$。我们通过表明$ \ mathrm {ex}(n,q_d)= o_d(n^{2- \ frac {1} {d-1} {d-1}+\ frac {1} {1} {(d-1){(d-1)2^{d-f-{d-rac}}})$,从而获得了这个旧问题的第一个功率改进。这回答了刘的问题。此外,我们的技术比立方体可以为更大的图表提供功能提高。 我们使用类似的方法来证明,任何$ n $ vertex,适当的边缘色的图形没有彩虹周期,最多都具有$ o(n(\ log n)^2)$ edge,从而改善了Tomon的$ N(\ log n)^{2+o(1)} $的先前最佳界限。此外,我们表明,任何适当的边缘色$ n $ vertex图,带有$ω(n \ log n)$边缘包含一个几乎是彩虹的循环:也就是说,几乎所有的边缘都具有独特的颜色。后一个结果很紧。
In 1964, Erdős proposed the problem of estimating the Turán number of the $d$-dimensional hypercube $Q_d$. Since $Q_d$ is a bipartite graph with maximum degree $d$, it follows from results of Füredi and Alon, Krivelevich, Sudakov that $\mathrm{ex}(n,Q_d)=O_d(n^{2-1/d})$. A recent general result of Sudakov and Tomon implies the slightly stronger bound $\mathrm{ex}(n,Q_d)=o(n^{2-1/d})$. We obtain the first power-improvement for this old problem by showing that $\mathrm{ex}(n,Q_d)=O_d(n^{2-\frac{1}{d-1}+\frac{1}{(d-1)2^{d-1}}})$. This answers a question of Liu. Moreover, our techniques give a power improvement for a larger class of graphs than cubes. We use a similar method to prove that any $n$-vertex, properly edge-coloured graph without a rainbow cycle has at most $O(n(\log n)^2)$ edges, improving the previous best bound of $n(\log n)^{2+o(1)}$ by Tomon. Furthermore, we show that any properly edge-coloured $n$-vertex graph with $ω(n\log n)$ edges contains a cycle which is almost rainbow: that is, almost all edges in it have a unique colour. This latter result is tight.