论文标题
迈向联合多元统计过程控制(FEDMSPC)
Towards federated multivariate statistical process control (FedMSPC)
论文作者
论文摘要
从线性(农产品使用)到循环经济的持续过渡对当前的最新信息和通信技术构成了重大挑战。特别是,从价值链中产生的(实时)数据的材料,过程和产品流的综合,高级观点的推导是有挑战性的。最重要的是,由于存在隐私问题,因此通常可以提供足够丰富的数据,但没有在公司边界之间共享,这使得无法构建集成过程模型,从而捕获输入材料,过程参数和沿价值链的关键性能指标之间的相互关系。在目前的贡献中,我们提出了基于联合的主体组件分析(PCA)和安全的多方计算,提出了一个隐私,联合的多元统计过程(FEDMSPC)框架,以促进激励措施,以促进沿价值链的利益相关者更紧密的合作。我们在两个工业基准数据集-SECOM和ST -AWFD上测试了我们的方法。我们的经验结果表明,与标准的单党(Multiway)PCA相比,所提出的方法具有出色的断层检测能力。此外,我们展示了我们的框架可能为价值链中每个数据持有人提供隐私的故障诊断的可能性,以支撑安全数据共享和联合过程建模的好处。
The ongoing transition from a linear (produce-use-dispose) to a circular economy poses significant challenges to current state-of-the-art information and communication technologies. In particular, the derivation of integrated, high-level views on material, process, and product streams from (real-time) data produced along value chains is challenging for several reasons. Most importantly, sufficiently rich data is often available yet not shared across company borders because of privacy concerns which make it impossible to build integrated process models that capture the interrelations between input materials, process parameters, and key performance indicators along value chains. In the current contribution, we propose a privacy-preserving, federated multivariate statistical process control (FedMSPC) framework based on Federated Principal Component Analysis (PCA) and Secure Multiparty Computation to foster the incentive for closer collaboration of stakeholders along value chains. We tested our approach on two industrial benchmark data sets - SECOM and ST-AWFD. Our empirical results demonstrate the superior fault detection capability of the proposed approach compared to standard, single-party (multiway) PCA. Furthermore, we showcase the possibility of our framework to provide privacy-preserving fault diagnosis to each data holder in the value chain to underpin the benefits of secure data sharing and federated process modeling.