论文标题

在约旦飞机双重的有限维度上

On the finite-dimensional representations of the double of the Jordan plane

论文作者

Andruskiewitsch, Nicolás, Pollastri, Héctor Martín Peña

论文摘要

我们继续研究约旦飞机的德林菲尔德双重,并用$ \ Mathcal d $表示,并在Arxiv:2002.02514中引入。 简单的有限维模块是在Arxiv中计算的:2108.13849;事实证明,它们通过$ u(\ spl_2(\ bbbk))$分解。在这里,我们介绍了Verma模块和类别$ \ Mathfrak o $,用于$ \ Mathcal D $,它们与谎言理论中的类似模块相似,但是由三角分解的0部分的不可兼容的模块引起的。因此,有最高权重等级(HW-RK)的概念。 我们对HW-RK一个不可分解的模块进行了分类,并找到了HW-RK两个的家族。 $ \ Mathcal D $的Gabriel颤抖是计算出来的,这意味着它具有野生表示类型。

We continue the study of the Drinfeld double of the Jordan plane, denoted by $\mathcal D$ and introduced in arXiv:2002.02514. The simple finite-dimensional modules were computed in arXiv:2108.13849; it turns out that they factorize through $U(\spl_2(\Bbbk))$. Here we introduce the Verma modules and the category $\mathfrak O$ for $\mathcal D$, which have a resemblance to the similar ones in Lie theory but induced from indecomposable modules of the 0-part of the triangular decomposition. Accordingly, there is the notion of highest weight rank (hw-rk). We classify the indecomposable modules of hw-rk one and find families of hw-rk two. The Gabriel quiver of $\mathcal D$ is computed implying that it has a wild representation type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源