论文标题
部分可观测时空混沌系统的无模型预测
Estimating interaction effects with panel data
论文作者
论文摘要
本文分析了如何在具有固定的$ t $ dimension的线性面板模型中在经济上合理的假设下始终估算的相互作用效应。我们主张\ emph {相关的相互作用项估计器}(引用),并表明它在不足以使相互作用项估计量一致的条件下是一致的,而相互作用项估计量在应用的计量经济学工作中最常见。我们的论文讨论了这些条件的经验内容,表明可以将标准推理程序应用于引用,并在仿真研究中分析一致性,相对效率,推理及其有限样本特性。在经验应用中,我们测试机器人在收入水平较高的国家中的劳动流效应是否更强。结果与我们的理论和仿真结果一致,并表明标准的交互项估计低估了一个国家收入水平在机器人与就业之间关系中的重要性,并且可能会过早拒绝在存在错误指定的情况下关于相互作用效应的零假设。
This paper analyzes how interaction effects can be consistently estimated under economically plausible assumptions in linear panel models with a fixed $T$-dimension. We advocate for a \emph{correlated interaction term estimator} (CITE) and show that it is consistent under conditions that are not sufficient for consistency of the interaction term estimator that is most common in applied econometric work. Our paper discusses the empirical content of these conditions, shows that standard inference procedures can be applied to CITE, and analyzes consistency, relative efficiency, inference, and their finite sample properties in a simulation study. In an empirical application, we test whether labor displacement effects of robots are stronger in countries at higher income levels. The results are in line with our theoretical and simulation results and indicate that standard interaction term estimation underestimates the importance of a country's income level in the relationship between robots and employment and may prematurely reject a null hypothesis about interaction effects in the presence of misspecification.