论文标题
部分可观测时空混沌系统的无模型预测
Dust temperature uncertainties hamper the inference of dust and molecular gas masses from the dust continuum emission of quiescent high-redshift galaxies
论文作者
论文摘要
观察到的框架亚毫米和毫米波长处的单磁通密度测量通常用于探测星系中的灰尘和气体质量。在这封信中,我们探讨了这种方法来推断尘埃质量的鲁棒性,重点关注静态星系,并使用一系列受控的实验对来自现实环境(FIRE)项目中反馈的四个大型光环进行了一系列受控实验。我们的起点是四个恒星形成,中央星系在z = 1.5和z = 4.5之间的七个红移。我们通过重新分配恒星年龄在每个研究的红移之前生成了经过修改的静态星系,该星系在每个研究的红移之前都被淬灭了100mr,500myr或1Gyr。我们使用辐射转移得出每个基金和改良星系的光谱能分布。我们证明,推断出的尘埃质量高度取决于假定的灰尘温度T_DUST,这通常在观察上是无约束的。由于最近假设T_DUST〜25K的静态星系的工作激励,我们表明,由于非星形星系中的灰尘温度较低,尘埃质量与1.3mm通量密度之间的比率可以高于最高数量级。这可能导致低估尘埃质量(以及当亚MM通量密度用作分子气体含量的代理时,气体质量)。在较高的红移下,这种低估最严重,在该较高的红移中,观察到的1.3mm通量密度探针远离雷利 - 吉恩斯制度的静止框架波长,因此超线性取决于灰尘温度。我们符合休息框远红外通量密度与大量加权尘埃温度之间的关系,该比例可用于限制观测值的灰尘温度,从而得出更可靠的灰尘和分子气体质量。
Single flux density measurements at observed-frame sub-millimeter and millimeter wavelengths are commonly used to probe dust and gas masses in galaxies. In this Letter, we explore the robustness of this method to infer dust mass, focusing on quiescent galaxies, using a series of controlled experiments on four massive haloes from the Feedback in Realistic Environments (FIRE) project. Our starting point is four star-forming, central galaxies at seven redshifts between z=1.5 and z=4.5. We generate modified quiescent galaxies that have been quenched for 100Myr, 500Myr, or 1Gyr prior to each of the studied redshifts by re-assigning stellar ages. We derive spectral energy distributions for each fiducial and modified galaxy using radiative transfer. We demonstrate that the dust mass inferred is highly dependent on the assumed dust temperature, T_dust, which is often unconstrained observationally. Motivated by recent work on quiescent galaxies that assumed T_dust~25K, we show that the ratio between dust mass and 1.3mm flux density can be higher than inferred by up to an order of magnitude, due to the considerably lower dust temperatures seen in non star-forming galaxies. This can lead to an underestimation of dust mass (and, when sub-mm flux density is used as a proxy for molecular gas content, gas mass). This underestimation is most severe at higher redshifts, where the observed-frame 1.3mm flux density probes rest-frame wavelengths far from the Rayleigh-Jeans regime, and hence depends super-linearly on dust temperature. We fit relations between ratios of rest-frame far-infrared flux densities and mass-weighted dust temperature that can be used to constrain dust temperatures from observations and hence derive more reliable dust and molecular gas masses.