论文标题

由电化学掺杂驱动的无侧链N型半导体聚合物的水合

Hydration of a side-chain-free n-type semiconducting ladder polymer driven by electrochemical doping

论文作者

Guo, Jiajie, Flagg, Lucas Q., Tran, Duyen K., Chen, Shinya E., Li, Ruipeng, Kolhe, Nagesh B., Giridharagopal, Rajiv, Jenekhe, Samson A., Richter, Lee J., Ginger, David S.

论文摘要

我们研究了梯子聚合物,聚(Benzimidazbenzophenannartoline)(BBL)的有机电化学晶体管(OECT)性能,以更好地理解在含有良好的Redox Kinetics中,无侧链的无侧链聚合物如何在含有良好的氧化还原环境中起作用。我们检查了来自不同来源的不同分子质量的两个bbl。在最初的减少步骤中,两个BBL均显示出明显的膜肿胀。通过结合电化学石英晶体微温度(EQCM)重量测定法,operando原子力显微镜(AFM),以及外拟南芥和外界的斑点X射线X射线散射(GIWAX),我们提供了详细的结构图,并提供了均匀的伯型点孔的详细结构图。与前静脉测量值相比,operando giwaxs在电化学掺杂时表现出的肿胀比以前所识别的要大,并且在depopoping时的收缩更少。数据表明,BBL膜经历了不可逆的水合,由初始电化学掺杂周期驱动,并具有显着的水位保留和层状膨胀,并在随后的氧化/还原周期中持续存在。这种肿胀创造了一个亲水性环境,在没有许多其他聚合物系统中使用的亲水性侧链的情况下,可以促进随后的快速水合离子转运。由于其坚固的梯子主链且缺乏亲水性侧链,主要的BBL摄入量不会显着降解晶体,并且在干燥后可以回收原始的脱水,未涂的状态。掺杂诱导的亲水性和稳健的晶体顺序的结合导致有效的离子运输和良好的稳定性。

We study the organic electrochemical transistors (OECTs) performance of the ladder polymer, poly(benzimidazobenzophenanthroline) (BBL) in an attempt to better understand how an apparently hydrophobic side-chain-free polymer is able to operate as an OECT with favorable redox kinetics in an aqueous environment. We examine two BBLs of different molecular masses from different sources. Both BBLs show significant film swelling during the initial reduction step. By combining electrochemical quartz crystal microbalance (eQCM) gravimetry, in-operando atomic force microscopy (AFM), and both ex-situ and in-operando grazing incidence wide-angle x-ray scattering (GIWAXS), we provide a detailed structural picture of the electrochemical charge injection process in BBL in the absence of any hydrophilic side-chains. Compared with ex-situ measurements, in-operando GIWAXS shows both more swelling upon electrochemical doping than has previously been recognized, and less contraction upon dedoping. The data show that BBL films undergo an irreversible hydration driven by the initial electrochemical doping cycle with significant water retention and lamellar expansion that persists across subsequent oxidation/reduction cycles. This swelling creates a hydrophilic environment that facilitates the subsequent fast hydrated ion transport in the absence of the hydrophilic side-chains used in many other polymer systems. Due to its rigid ladder backbone and absence of hydrophilic side-chains, the primary BBL water uptake does not significantly degrade the crystalline order, and the original dehydrated, unswelled state can be recovered after drying. The combination of doping induced hydrophilicity and robust crystalline order leads to efficient ionic transport and good stability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源