论文标题
关于硬件有效ansatz的实际实用性
On the practical usefulness of the Hardware Efficient Ansatz
论文作者
论文摘要
变分量子算法(VQAS)和量子机学习(QML)模型训练参数化的量子电路来解决给定的学习任务。这些算法的成功大大取决于适当为量子电路选择ANSATZ。也许最著名的Ansatzes之一是一维层状硬件有效的Ansatz(HEA),它试图通过使用本机门和连接剂来最大程度地降低硬件噪声的效果。这种HEA的使用产生了一定的矛盾,这是因为它长时间遭受了贫瘠的高原遭受贫瘠的状态,但它也可以在浅的较浅的地方避免它们。在这项工作中,我们试图确定是否应该或不应该使用HEA。我们严格地确定应该避免使用浅的heas的方案(例如,使用满足纠缠卷定律的数据的VQA或QML任务)。更重要的是,我们确定了一个金色的场景,浅水heas可以实现量子加速:QML任务具有满足纠缠区域法律的数据。我们提供了这种情况的示例(例如高斯对角线集合随机哈密顿歧视),并且我们表明,在这些情况下,浅层始终是可训练的,并且存在损失函数值的抗浓缩。我们的工作强调了输入状态在参数化量子电路的训练性中起着至关重要的作用,这是一种在我们的数字中验证的现象。
Variational Quantum Algorithms (VQAs) and Quantum Machine Learning (QML) models train a parametrized quantum circuit to solve a given learning task. The success of these algorithms greatly hinges on appropriately choosing an ansatz for the quantum circuit. Perhaps one of the most famous ansatzes is the one-dimensional layered Hardware Efficient Ansatz (HEA), which seeks to minimize the effect of hardware noise by using native gates and connectives. The use of this HEA has generated a certain ambivalence arising from the fact that while it suffers from barren plateaus at long depths, it can also avoid them at shallow ones. In this work, we attempt to determine whether one should, or should not, use a HEA. We rigorously identify scenarios where shallow HEAs should likely be avoided (e.g., VQA or QML tasks with data satisfying a volume law of entanglement). More importantly, we identify a Goldilocks scenario where shallow HEAs could achieve a quantum speedup: QML tasks with data satisfying an area law of entanglement. We provide examples for such scenario (such as Gaussian diagonal ensemble random Hamiltonian discrimination), and we show that in these cases a shallow HEA is always trainable and that there exists an anti-concentration of loss function values. Our work highlights the crucial role that input states play in the trainability of a parametrized quantum circuit, a phenomenon that is verified in our numerics.