论文标题
从动态均值场理论中改善了多轨两粒子自洽的方法中的有效顶点
Improved effective vertices in the multi-orbital Two-Particle Self-Consistent method from Dynamical Mean-Field Theory
论文作者
论文摘要
在这项工作中,我们提出了两粒子自洽方法(TPSC)的多轨形式,此处有效的局部和静态不可减至的相互作用顶点是通过动力学平均场理论(DMFT)来确定的。该方法取代了双职业的近似ANSATZ方程$ \ langle n^{} _ {α,σ} n^{} _ {β,et {β,σ'} \ rangle $,通过直接使用DMFT对同一模型进行采样。与通常的Hartree-fock(如Ansatz)相比,这会导致在弱相关方面更准确的本地顶点,并提供对以前无法触及的更强的相关系统的访问权限。通过DMFT杂质自我能源代替TPSC自我能源的局部组成部分,可以扩展这种方法,这会导致改善的自我能源,并融合了强烈的局部相关性,但保留了非平凡的动量依赖性。我们发现,TPSC和DMFT的这种组合对多轨道的多轨公式进行了显着改进,因为它允许在没有人工对称性假设的情况下确定自旋顶点的组件,并打开可能包括横向粒子孔通道。新方法还能够删除TPSC的电荷顶点中的非物理差异。我们发现在计算中可以访问较低温度的一般趋势。基准测试单粒子量(例如局部光谱函数)具有其他多体方法,我们发现更强烈的相关性方案有显着改善。
In this work we present a multi-orbital form of the Two-Particle Self-Consistent approach (TPSC), here the effective local and static irreducible interaction vertices are determined by means of the Dynamical Mean-Field Theory (DMFT). This approach replaces the approximate ansatz equations for the double occupations $\langle n^{}_{α,σ}n^{}_{β,σ'}\rangle$ by sampling them directly for the same model using DMFT. Compared to the usual Hartree-Fock like ansatz, this leads to more accurate local vertices in the weakly correlated regime, and provides access to stronger correlated systems that were previously out of reach. This approach is extended by replacing the local component of the TPSC self-energy by the DMFT impurity self-energy, which results in an improved self-energy that incorporates strong local correlations but retains a non-trivial momentum-dependence. We find that this combination of TPSC and DMFT provides a significant improvement over the multi-orbital formulation of multi-orbital TPSC, as it allows to determine the components of the spin vertex without artificial symmetry assumptions, and opens the possibility to include the transversal particle-hole channel. The new approach is also able to remove unphysical divergences in the charge vertices in TPSC. We find a general trend that lower temperatures can be accessed in the calculation. Benchmarking single-particle quantities such as the local spectral function with other many-body methods we find significant improvement in the more strongly correlated regime.