论文标题
关于在保形球中最小亚曼叶的稳定性
On the stability of minimal submanifolds in conformal spheres
论文作者
论文摘要
鉴于$ n $维riemannian Sphere与第一轮和$δ$ - 夹式的一致,我们表明它不包含任何封闭的稳定稳定的最小尺寸尺寸的$ 2 \ le K \ le K \ le K \ le n-Δ^{ - 1} $。
Given an $n$-dimensional Riemannian sphere conformal to the round one and $δ$-pinched, we show that it does not contain any closed stable minimal submanifold of dimension $2\le k\le n-δ^{-1}$.