论文标题

平面限制$(n+1)$ - 身体问题的双曲线和双曲线解决方案

Hyperbolic and Bi-hyperbolic solutions in the planar restricted $(N+1)$-body problem

论文作者

Yu, Guowei

论文摘要

考虑平面限制$(n+1)$ - 身体问题,具有$ n(\ ge 2)$的轨迹,$ n $ n $ body问题的原始解决方案,对于任何积极的能量$ h $和方向$θ_{\ pm} \ in [0,2oud)$,我们证明,在任何初始位置$ x $ x $ x $ t时$γ^{\ pm} | _ {[t_x,\ pm \ infty)} $满足$γ^{\ pm}(t_x)= x $和$$ \ liM_ { = 2π)}。$$,我们还证明存在Bi-Hyperbolic解决方案$γ| _ {\ Mathbb {r}} $满足$ \ lim_ {t \ to \ pm \ pm \ infty}γ(t) / |γ(t) / |γ(t) / |γ(t)| =

Consider the planar restricted $(N+1)$-body problem with trajectories of the $N(\ge 2)$ primaries forming a collision-free periodic solution of the $N$-body problem, for any positive energy $h$ and directions $θ_{\pm} \in [0, 2π)$, we prove that starting from any initial position $x$ at any initial time $t_x$, there are hyperbolic solutions $γ^{\pm}|_{[t_x, \pm \infty)}$ satisfying $γ^{\pm}(t_x) =x$ and $$ \lim_{t \to \pm \infty} γ^{\pm}(t) / |γ^{\pm}(t)| = e^{i θ_{\pm} (\text{mod } 2π)}, \;\;\lim_{ t \to \pm \infty} \dotγ^{\pm}(t) = \pm \sqrt{2h} e^{i θ_{\pm} (\text{mod } 2π)}.$$ Moreover we also prove the existence of a bi-hyperbolic solution $γ|_{\mathbb{R}}$ satisfying $$ \lim_{t \to \pm \infty} γ(t) / |γ(t)| = e^{i θ_{\pm} (\text{mod } 2π)}, \;\;\lim_{ t \to \pm \infty} \dotγ(t) = \pm \sqrt{2h} e^{i θ_{\pm} (\text{mod } 2π)}.$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源