论文标题
质子和氦气加热,通过在低β等离子体中级联湍流
Proton and Helium Heating by Cascading Turbulence in a Low-beta Plasma
论文作者
论文摘要
在磁化等离子体中的能量耗散研究中,离子的能量和加热是一个基本问题。特别是,加热重离子(包括$ {}^{4} \ mathrm {he}^{2+} $,$ {}^{3} \ Mathrm {He}^{2+} $ and erse)一直是理解强烈的Solar solar flares的奇迹。在本文中,通过二维杂交粒子粒子模拟,我们研究了氦离子的加热($ {}^{}^{4} \ mathrm {he}^{2+} $)由湍流通过cascading波的湍流驱动的湍流,从左侧的极性旋转波和远程分支的大尺度上发出,远程旋转型均可构图,均可构成远程的五个杂音,氦离子。我们发现,由于其速度分布在沿背景磁场的速度分布函数中梁和高原的形成,因此氦离子和质子的加热显着(与背景磁场)加热。沿磁场垂直于磁场的方向加热氦离子的速度低于平行方向的速率,但由于几百个质子陀螺仪的共振,由于回旋式旋转的共鸣,主要由倾斜的繁殖波诱导的波动膜旋转的波浪,在注射的荧光率高的硫酸级别的级别上,在大量的海浪中诱导的波浪诱导了几百个质子加热。但是,由于质子回旋频率附近没有左手极化的回旋体波,几乎没有证据表明质子在垂直方向上加热。我们的结果对于理解$ {}^{3} \ Mathrm {He} $的优先加热和其他重离子的优先加热非常有用。
How ions are energized and heated is a fundamental problem in the study of energy dissipation in magnetized plasmas. In particular, the heating of heavy ions (including ${}^{4}\mathrm{He}^{2+}$, ${}^{3}\mathrm{He}^{2+}$ and others) has been a constant concern for understanding the microphysics of impulsive solar flares. In this article, via two-dimensional hybrid-kinetic Particle-in-Cell simulations, we study the heating of Helium ions (${}^{4}\mathrm{He}^{2+}$) by turbulence driven by cascading waves launched at large scales from the left-handed polarized Helium ion cyclotron wave branch of a multi-ion plasma composed of electrons, protons, and Helium ions. We find significant parallel (to the background magnetic field) heating for both Helium ions and protons due to the formation of beams and plateaus in their velocity distribution functions along the background magnetic field. The heating of Helium ions in the direction perpendicular to the magnetic field starts with a lower rate than that in the parallel direction, but overtakes the parallel heating after a few hundreds of the proton gyro-periods due to cyclotron resonances with mainly obliquely propagating waves induced by the cascade of injected Helium ion cyclotron waves at large scales. There is however little evidence for proton heating in the perpendicular direction due to the absence of left-handed polarized cyclotron waves near the proton cyclotron frequency. Our results are useful for understanding the preferential heating of ${}^{3}\mathrm{He}$ and other heavy ions in the ${}^{3}\mathrm{He}$-rich solar energetic particle events, in which Helium ions play a crucial role as a species of background ions regulating the kinetic plasma behavior.