论文标题

概率停车功能

Probabilistic Parking Functions

论文作者

Durmić, Irfan, Han, Alex, Harris, Pamela E., Ribeiro, Rodrigo, Yin, Mei

论文摘要

我们通过引入随机性和新的停车协议来考虑经典停车功能的概念,这是受论文``停车功能:选择自己的冒险''中的工作的启发。在我们的结果中,我们证明,从长度$ n $偏好向量获得停车功能的可能性独立于概率参数$ p $。我们还探索了优先矢量的属性,因为它是一个停车功能,并讨论了概率参数$ p $的效果。特别感兴趣的是$ p = 1/2 $,我们在某些停车统计中表现出急剧过渡。我们还提出了停车协议的几个有趣的组合后果。特别是,我们为OEI A220884中描述的阵列提供了一种组合解释,作为与占领停车位有关的特定属性的预期数量序列,该序列解决了2020年提出的Novelli和Thibon的开放问题(Arxiv:Arxiv:1209.5959)。最后,我们将结果与组合学中的其他加权现象联系起来,并为研究提供了进一步的方向。

We consider the notion of classical parking functions by introducing randomness and a new parking protocol, as inspired by the work presented in the paper ``Parking Functions: Choose your own adventure,'' (arXiv:2001.04817) by Carlson, Christensen, Harris, Jones, and Rodríguez. Among our results, we prove that the probability of obtaining a parking function, from a length $n$ preference vector, is independent of the probabilistic parameter $p$. We also explore the properties of a preference vector given that it is a parking function and discuss the effect of the probabilistic parameter $p$. Of special interest is when $p=1/2$, where we demonstrate a sharp transition in some parking statistics. We also present several interesting combinatorial consequences of the parking protocol. In particular, we provide a combinatorial interpretation for the array described in OEIS A220884 as the expected number of preference sequences with a particular property related to occupied parking spots, which solves an open problem of Novelli and Thibon posed in 2020 (arXiv:1209.5959). Lastly, we connect our results to other weighted phenomena in combinatorics and provide further directions for research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源