论文标题
全球野火预测的深度学习
Deep Learning for Global Wildfire Forecasting
论文作者
论文摘要
预计气候变化会通过加剧火灾天气加剧野火活动。提高我们在全球范围内预测野火的能力对于减轻其负面影响至关重要。在这项工作中,我们创建了一个全球火灾数据集,并展示了一个原型,用于通过使用分割深度学习模型在次季节尺度上预测全球燃烧区域的存在。特别是,我们提出了一个开放访问全球分析的数据库,其中包含与季节性和亚地区消防驱动因素(气候,植被,海洋指数,与人类相关变量)以及历史燃烧的区域和2001-2021的野火排放相关的各种变量。我们训练一个深度学习模型,该模型将全球野火预测视为图像分割任务,并巧妙地预测了燃烧区域的存在8、16、32和64天。我们的工作激发了对全球烧毁区域预测的深度学习的使用,并为改善全球野火模式的预期铺平了道路。
Climate change is expected to aggravate wildfire activity through the exacerbation of fire weather. Improving our capabilities to anticipate wildfires on a global scale is of uttermost importance for mitigating their negative effects. In this work, we create a global fire dataset and demonstrate a prototype for predicting the presence of global burned areas on a sub-seasonal scale with the use of segmentation deep learning models. Particularly, we present an open-access global analysis-ready datacube, which contains a variety of variables related to the seasonal and sub-seasonal fire drivers (climate, vegetation, oceanic indices, human-related variables), as well as the historical burned areas and wildfire emissions for 2001-2021. We train a deep learning model, which treats global wildfire forecasting as an image segmentation task and skillfully predicts the presence of burned areas 8, 16, 32 and 64 days ahead of time. Our work motivates the use of deep learning for global burned area forecasting and paves the way towards improved anticipation of global wildfire patterns.