论文标题

与坐标相关的RR场的II型超弦的非交换性和非缔合性 - 一般情况

Noncommutativity and nonassociativity of type II superstring with coordinate dependent RR field -- the general case

论文作者

Obric, D., Nikolic, B.

论文摘要

在本文中,我们考虑了在坐标依赖性的Ramond-Ramond场的情况下,由II型超音型的骨坐标的T-偶(T偶)引起的。使用这种背景字段的选择并不是翻译不变的。因此,我们将采用Buscher程序的概括,可以应用于具有坐标依赖性场并且不具有翻译等轴测图的情况。新获得的T二理论的玻色子部分是非本地的,并在Lagrange乘数$ Y__ $和双坐标$ΔV_μ$跨越的非几何双空间中定义。我们将再次将Buscher程序应用于T二理论,以检查是否可以挽救原始理论。最后,我们将使用T二偶转换定律以及原始理论的泊松括号来得出T偶有理论的泊松支架结构。

In this paper we consider non-commutativity that arises from T-duality of bosonic coordinates of type II superstring in presence of coordinate dependent Ramond-Ramond field. Action with such choice of the background fields is not translational invariant. Consequently, we will employ generalization of Buscher procedure that can be applied to cases that have coordinate dependent fields and that do not possess translational isometry. Bosonic part of newly obtained T-dual theory is non-local and defined in non-geometric double space spanned by Lagrange multipliers $y_μ$ and double coordinate $ΔV_μ$. We will apply Buscher procedure once more on T-dual theory to check if original theory can be salvaged. Finally, we will use T-dual transformation laws along with Poisson brackets of original theory to derive Poisson bracket structure of T-dual theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源