论文标题

多变量($φ$,$ \ MATHCAL {o} _K^\ times $) - 模块和local-Global兼容性

Multivariable ($φ$,$\mathcal{O}_K^\times$)-modules and local-global compatibility

论文作者

Breuil, Christophe, Herzig, Florian, Hu, Yongquan, Morra, Stefano, Schraen, Benjamin

论文摘要

令$ p $为质量数字,$ k $ a $ \ mathbb {q} _p $和$ \ mathbb {f} $ $ \ mathbb {f} _p $的有限扩展。使用PerfectOid空间,我们将$ {\ rm gal}的$ {\ rm gal} $ {\ overline k/k)$ over $ \ mathbb {f} $ aétale$(φ,\ nimcal {o)$ d_a $ d_a^ytlline($ d_a^ytime)($ d_a^ytime) $ a $ of $ \ mathbb {f} [\![\ mathcal {o} _k] \!] $。我们推测,人们还可以将o tale $(φ,\ Mathcal {o} _k^\ times)$ - 模块$ d_a(π)$与任何平稳的表示$ \ Mathrm {gl} _2(k)$ of任何平稳的表示$π$π$π$π$π$π$π$π$π$ \ mathrm {gl} _2(K) $ d_a(π)$是同构(扭曲)至$ d_a^\ otimes(\overlineρ)$,其中$ \overlineρ$是$ {\ rm gal}的基础$ 2 $ 2二维表示(\ overline k/k)$。使用同一位作者的先前工作,我们证明了当$ \overlineρ$是半简单且足够通用时的猜想。

Let $p$ be a prime number, $K$ a finite unramified extension of $\mathbb{Q}_p$ and $\mathbb{F}$ a finite extension of $\mathbb{F}_p$. Using perfectoid spaces we associate to any finite-dimensional continuous representation $\overlineρ$ of ${\rm Gal}(\overline K/K)$ over $\mathbb{F}$ an étale $(φ,\mathcal{O}_K^\times)$-module $D_A^\otimes(\overlineρ)$ over a completed localization $A$ of $\mathbb{F}[\![\mathcal{O}_K]\!]$. We conjecture that one can also associate an étale $(φ,\mathcal{O}_K^\times)$-module $D_A(π)$ to any smooth representation $π$ of $\mathrm{GL}_2(K)$ occurring in some Hecke eigenspace of the mod $p$ cohomology of a Shimura curve, and that moreover $D_A(π)$ is isomorphic (up to twist) to $D_A^\otimes(\overlineρ)$, where $\overlineρ$ is the underlying $2$-dimensional representation of ${\rm Gal}(\overline K/K)$. Using previous work of the same authors, we prove this conjecture when $\overlineρ$ is semi-simple and sufficiently generic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源