论文标题

订单敏感的神经选区解析

Order-sensitive Neural Constituency Parsing

论文作者

Wang, Zhicheng, Shi, Tianyu, Xiao, Liyin, Liu, Cong

论文摘要

我们提出了一种新型算法,该算法改善了以前基于神经跨度的CKY解码器进行选区解析。与传统的基于跨度的解码相比,仅根据其分数的总和将跨度组合在一起,我们引入了一种订单敏感的策略,其中跨度组合得分更仔细地从订单敏感的基础上得出。我们的解码器可以被视为对现有基于跨度的解码器的概括,从而确定了将下层跨度组合到更高级别跨度的优质颗粒评分方案,我们强调下层跨度跨度的顺序,并使用订单敏感的跨度分数,并使用订单敏感的组合语法规则分数,以增强预测性的准确性。我们实施了拟议的解码策略来利用GPU并行性,并以基于最先进的跨度解析器的形式达到解码速度。使用先前的最先进模型,而没有其他数据作为基准,我们胜过它,并将Penn Treebank数据集中的F1分数提高0.26%,而中国Treebank数据集则提高了0.35%。

We propose a novel algorithm that improves on the previous neural span-based CKY decoder for constituency parsing. In contrast to the traditional span-based decoding, where spans are combined only based on the sum of their scores, we introduce an order-sensitive strategy, where the span combination scores are more carefully derived from an order-sensitive basis. Our decoder can be regarded as a generalization over existing span-based decoder in determining a finer-grain scoring scheme for the combination of lower-level spans into higher-level spans, where we emphasize on the order of the lower-level spans and use order-sensitive span scores as well as order-sensitive combination grammar rule scores to enhance prediction accuracy. We implement the proposed decoding strategy harnessing GPU parallelism and achieve a decoding speed on par with state-of-the-art span-based parsers. Using the previous state-of-the-art model without additional data as our baseline, we outperform it and improve the F1 score on the Penn Treebank Dataset by 0.26% and on the Chinese Treebank Dataset by 0.35%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源