论文标题
无限二维Banach空间中近似几何分位数的统计特性
Statistical properties of approximate geometric quantiles in infinite-dimensional Banach spaces
论文作者
论文摘要
几何分位数是位置参数,将经典的单变量分位数扩展到标准空间(可能是无限维度),并且包括几何中位数作为特殊情况。无限维设置在功能数据的建模和分析以及内核方法中高度相关。 我们首先提供有关几何分位数的存在和独特性的新结果。然后使用近似M估计器进行估计,我们研究了其在无限维度中的大样本特性。 当种群分位数不是唯一的定义时,我们利用变异收敛的理论来获得有关弱拓扑的子序列的渐近陈述。当有独特的人群分位数时,我们在最少的假设下表明,对于广泛的Banach空间,包括每个可分离的均匀凸出空间,估计值在规范拓扑中是一致的。 在可分离的希尔伯特空间中,我们建立了估计值的弱巴哈杜尔 - 基弗表示形式,从中$ \ sqrt n $ - y-asymptotic strormation遵循。结果,我们获得了在通用希尔伯特空间中有效的第一个中央限制定理,并且在最小的假设下,与有限维情况的假设完全匹配。 即使是希尔伯特空间中的确切的几何中位数,我们的一致性和渐近正态性也会显着改善最新技术状态。
Geometric quantiles are location parameters which extend classical univariate quantiles to normed spaces (possibly infinite-dimensional) and which include the geometric median as a special case. The infinite-dimensional setting is highly relevant in the modeling and analysis of functional data, as well as for kernel methods. We begin by providing new results on the existence and uniqueness of geometric quantiles. Estimation is then performed with an approximate M-estimator and we investigate its large-sample properties in infinite dimension. When the population quantile is not uniquely defined, we leverage the theory of variational convergence to obtain asymptotic statements on subsequences in the weak topology. When there is a unique population quantile, we show, under minimal assumptions, that the estimator is consistent in the norm topology for a wide range of Banach spaces including every separable uniformly convex space. In separable Hilbert spaces, we establish weak Bahadur-Kiefer representations of the estimator, from which $\sqrt n$-asymptotic normality follows. As a consequence, we obtain the first central limit theorem valid in a generic Hilbert space and under minimal assumptions that exactly match those of the finite-dimensional case. Our consistency and asymptotic normality results significantly improve the state of the art, even for exact geometric medians in Hilbert spaces.