论文标题

高温氧混合物的振动内部能量转移和解离

Rovibrational Internal Energy Transfer and Dissociation of High-Temperature Oxygen Mixture

论文作者

Jo, Sung Min, Venturi, Simone, Kim, Jae Gang, Panesi, Marco

论文摘要

这项工作为$ \ text {o} _2 $+$ \ text {o} _2 $系统构建了一个反振动状态对状态模型,利用高效率势能表面和准经典轨迹计算。该模型用于研究内部能量传递和使用主方程方法在离解环境中的非平衡反应过程,从而明确计算每个内部反振动状态的动力学。为了应对表征反应性双分子碰撞的大量基本过程,假定碰撞伴侣的内部状态在规定的内部温度下遵循玻尔兹曼分布。此过程使问题可解决,将计算成本与$ \ text {o} _2 $+o系统降低到可比的比例。构建的旋转振动特异性动力学数据库涵盖了7500-20000 K的温度范围。对等度的能量传递和解离过程的分析,等温条件揭示了与平衡玻尔兹曼的显着偏离在能量传递和解离阶段发生的情况。比较$ \ text {o} _2 $分子与$ \ text {o} _2 $+o的种群分布表现出更大程度的非平衡性,其特征在于更加弥漫性的分布,从而更清楚地识别了振动链。这部分是由于反振动状态效率较低的混合,这导致了准稳态分布中更加漫射的Rovbibrational分布。组合$ \ text {o} _3 $+$ \ text {o} _4 $系统的主方程分析表明,$ \ text {o} _2 $+$ \ $ \ $ \ text {o} _2 $控制能源转移的早期阶段,而$ \ text {o} _2 $+o+o+o+o os dissociation of Dissociation of Dynamicics of Dynamicics。这些发现将为氧化学的未来发展提供强大的物理基础。

This work constructs a rovibrational state-to-state model for the $\text{O}_2$+$\text{O}_2$ system leveraging high-fidelity potential energy surfaces and quasi-classical trajectory calculations. The model is used to investigate internal energy transfer and non-equilibrium reactive processes in dissociating environment using a master equation approach, whereby the kinetics of each internal rovibrational state is explicitly computed. To cope with the exponentially large number of elementary processes that characterize reactive bimolecular collisions, the internal states of the collision partner are assumed to follow a Boltzmann distribution at a prescribed internal temperature. This procedure makes the problem tractable, reducing the computational cost to a comparable scale with the $\text{O}_2$+O system. The constructed rovibrational-specific kinetic database covers the temperature range of 7500-20000 K. The analysis of the energy transfer and dissociation process in isochoric and isothermal conditions reveals that significant departures from the equilibrium Boltzmann distribution occur during the energy transfer and dissociation phase. Comparing the population distribution of the $\text{O}_2$ molecules against the $\text{O}_2$+O demonstrates a more significant extent of non-equilibrium characterized by a more diffuse distribution whereby the vibrational strands are more clearly identifiable. This is partly due to a less efficient mixing of the rovibrational states, which results in more diffuse rovibrational distributions in the quasi-steady-state distribution. The master equation analysis for the combined $\text{O}_3$+$\text{O}_4$ system reveals that the $\text{O}_2$+$\text{O}_2$ governs the early stage of energy transfer, while the $\text{O}_2$+O takes control of the dissociation dynamics. The findings will provide strong physical foundations for future development of oxygen chemistry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源