论文标题

使用正式概念分析和Dempster-Shafer理论进行审核的灵活分类

Flexible categorization for auditing using formal concept analysis and Dempster-Shafer theory

论文作者

Boersma, Marcel, Manoorkar, Krishna, Palmigiano, Alessandra, Panettiere, Mattia, Tzimoulis, Apostolos, Wijnberg, Nachoem

论文摘要

业务流程的分类是审核的重要组成部分。审计中的大量跨国数据可以用加权双方图表示为财务帐户之间的交易。我们将这样的两分图视为多名正式上下文,我们用来通过使用正式概念分析中的方法来根据业务流程所涉及的财务帐户来获取这些业务流程的可解释分类。本文中介绍的方法的具体解释性特征提供了比不可解释的机器学习技术的几个优点,实际上,它可以作为开发算法的基础,这些算法可以执行透明且负责任的原理集群的任务。在这里,我们专注于根据审计中各种代理商或子任务的不同财务账户或疑问议程中的不同范围进行分类的不同方法来分类。我们使用Dempster-Shafer质量功能来表示议程在不同的财务帐户中表现出不同的兴趣。我们提出了两种新方法,以从这些议程中获得分类。我们还对具有不同疑问议程的代理人之间的一些可能的审议场景进行了建模,以达到汇总议程和分类。本文开发的框架提供了正式的基础,可以根据组织中不同代理的议程(例如〜一个审计公司)以及通过审议之间的相互作用来获取和研究可解释的分类。

Categorization of business processes is an important part of auditing. Large amounts of transnational data in auditing can be represented as transactions between financial accounts using weighted bipartite graphs. We view such bipartite graphs as many-valued formal contexts, which we use to obtain explainable categorization of these business processes in terms of financial accounts involved in a business process by using methods in formal concept analysis. The specific explainability feature of the methodology introduced in the present paper provides several advantages over e.g.~non-explainable machine learning techniques, and in fact, it can be taken as a basis for the development of algorithms which perform the task of clustering on transparent and accountable principles. Here, we focus on obtaining and studying different ways to categorize according to different extents of interest in different financial accounts, or interrogative agendas, of various agents or sub-tasks in audit. We use Dempster-Shafer mass functions to represent agendas showing different interest in different set of financial accounts. We propose two new methods to obtain categorizations from these agendas. We also model some possible deliberation scenarios between agents with different interrogative agendas to reach an aggregated agenda and categorization. The framework developed in this paper provides a formal ground to obtain and study explainable categorizations from the data represented as bipartite graphs according to the agendas of different agents in an organization (e.g.~an audit firm), and interaction between these through deliberation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源