论文标题

在球体三角形中重新配置色素

Reconfiguration of colorings in triangulations of the sphere

论文作者

Ito, Takehiro, Iwamasa, Yuni, Kobayashi, Yusuke, Maezawa, Shun-ichi, Nozaki, Yuta, Okamoto, Yoshio, Ozeki, Kenta

论文摘要

1973年,Fisk证明,可以通过一系列Kempe-Changes从任何$ 3 $颜色的$ 2 $ -sphere的$ 3 $颜色的三角剖分。另一方面,如果我们只能在每个步骤中重新涂一个一个顶点(这是kempe-change的一种特殊情况),则存在一个$ 4 $的颜色,无法从任何$ 3 $颜色中获得。在本文中,我们介绍了$ 4 $的颜色的特征,即$ 3 $ - 可油的三角剖分,可以从$ 3 $ sphere中获得$ 3 $ - 通过一系列重新涂上操作从单个顶点重新上漆的$ 3 $ colition,以及一个$ 3 $ - $ 3 $ colorable的$ 2 $ 2 $ 2-cpphere的标准。 $ 3 $ - 通过这样的序列颜色。此外,我们的第一个结果可以推广到高维情况下,其中``$ 4 $颜色''' \ geq 4 $。此外,我们表明,对于给定的两个$(k+1)$ - 颜色,可以通过这样的序列从另一个序列中获得的问题是pspace-complete,对于任何固定的$ k \ geq 4 $。我们上面的结果可以作为有关{\ sc $ k $ -Recoloring}的计算问题的新结果和{\ sc连接性的$ k $ - 颜色重新配置图},这是组合重新配置领域的基本问题。

In 1973, Fisk proved that any $4$-coloring of a $3$-colorable triangulation of the $2$-sphere can be obtained from any $3$-coloring by a sequence of Kempe-changes. On the other hand, in the case where we are only allowed to recolor a single vertex in each step, which is a special case of a Kempe-change, there exists a $4$-coloring that cannot be obtained from any $3$-coloring. In this paper, we present a characterization of a $4$-coloring of a $3$-colorable triangulation of the $2$-sphere that can be obtained from a $3$-coloring by a sequence of recoloring operations at single vertices, and a criterion for a $3$-colorable triangulation of the $2$-sphere that all $4$-colorings can be obtained from a $3$-coloring by such a sequence. Moreover, our first result can be generalized to a high-dimensional case, in which ``$4$-coloring,'' ``$3$-colorable,'' and ``$2$-sphere'' above are replaced with ``$k$-coloring,'' ``$(k-1)$-colorable,'' and ``$(k-2)$-sphere'' for $k \geq 4$, respectively. In addition, we show that the problem of deciding whether, for given two $(k+1)$-colorings, one can be obtained from the other by such a sequence is PSPACE-complete for any fixed $k \geq 4$. Our results above can be rephrased as new results on the computational problems named {\sc $k$-Recoloring} and {\sc Connectedness of $k$-Coloring Reconfiguration Graph}, which are fundamental problems in the field of combinatorial reconfiguration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源