论文标题

IRS辅助MISO无线网络中的IRS-用户协会:凸优化和机器学习方法

IRS-User Association in IRS-Aided MISO Wireless Networks: Convex Optimization and Machine Learning Approaches

论文作者

Amiriara, Hamid, Ashtiani, Farid, Mirmohseni, Mahtab, Nasiri-Kenari, Masoumeh

论文摘要

本文集中在多输入单输出(MISO)下行无线通信网络中将智能反射表面(IRS)与多个用户相关联的问题。本文的主要目的是通过解决IRS-用户关联,IRS反射和BS Beam形成的关节优化问题,以最大化所有用户的总和,该问题被表达为非convex混合构成优化问题。可变分离和松弛用于将问题转化为三个凸子问题,这些问题通过凸优化(CO)方法替代解决。拟议的基于CO的算法的主要缺点是高计算复杂性。因此,我们利用机器学习(ML)来解决这个问题。为此,首先,我们将优化问题转换为回归问题。然后,我们使用基于CO的生成数据培训的前馈神经网络(FNN)来解决它。仿真结果表明,所提出的基于ML的算法具有相当于基于CO的算法的性能,但由于其离线训练程序而导致的计算复杂性较小。

This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization problem of the IRS-user association, IRS reflection, and BS beamforming, formulated as a non-convex mixed-integer optimization problem. The variable separation and relaxation are used to transform the problem into three convex sub-problems, which are alternatively solved through the convex optimization (CO) method. The major drawback of the proposed CO-based algorithm is high computational complexity. Thus, we make use of machine learning (ML) to tackle this problem. To this end, first, we convert the optimization problem into a regression problem. Then, we solve it with feed-forward neural networks (FNNs), trained by CO-based generated data. Simulation results show that the proposed ML-based algorithm has a performance equivalent to the CO-based algorithm, but with less computation complexity due to its offline training procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源