论文标题
Cramér-rao绑定最小化IRS的多源集成感应和通信与扩展目标
Cramér-Rao Bound Minimization for IRS-Enabled Multiuser Integrated Sensing and Communication with Extended Target
论文作者
论文摘要
本文调查了启用的智能反射表面(IRS)启用的多源集成感应和通信(ISAC)系统,该系统由一个多人安德滕纳基站(BS),一个IRS,一个IRS,多个单人体通信使用者(CUS)和BS的非线观察(NLOS)地区的一个扩展目标组成。部署了IRS,不仅可以协助从BS到CUS的通信,而且还可以根据BS-IRS-TARGET-TARGET-TARGET-IRS-BS链接的回声信号启用BS的NLOS目标传感。为了提供全度的感应自由度,我们假设BS发送了其他专用的传感信号与信息信号相结合。因此,我们考虑两种类型的CU接收器,即I型和II型接收器,它们没有分别取消感应信号的干扰。在此设置下,我们共同优化了BS处的发射光束和IRS的反射性光束成形,以最大程度地减少CRAMér-RAO结合(CRB),以估算IRS相对于IRS的目标响应矩阵,但要受到最小信号到噪声(SINR)的最小信号 - 限制(SINR)在CUS和TransEnt bs的最大限制。我们通过使用交替优化和半明确弛豫的技术来提出有效的算法来解决高度非凸sinr限制的CRB最小化问题。数值结果表明,所提出的设计的估计值比其他基准方案要低,并且当CUS数量大于一个时,感应信号干扰预算力是有益的。
This paper investigates an intelligent reflecting surface (IRS) enabled multiuser integrated sensing and communication (ISAC) system, which consists of one multi-antenna base station (BS), one IRS, multiple single-antenna communication users (CUs), and one extended target at the non-line-of-sight (NLoS) region of the BS. The IRS is deployed to not only assist the communication from the BS to the CUs, but also enable the BS's NLoS target sensing based on the echo signals from the BS-IRS-target-IRS-BS link. To provide full degrees of freedom for sensing, we suppose that the BS sends additional dedicated sensing signals combined with the information signals. Accordingly, we consider two types of CU receivers, namely Type-I and Type-II receivers, which do not have and have the capability of cancelling the interference from the sensing signals, respectively. Under this setup, we jointly optimize the transmit beamforming at the BS and the reflective beamforming at the IRS to minimize the Cramér-Rao bound (CRB) for estimating the target response matrix with respect to the IRS, subject to the minimum signal-to-interference-plus-noise ratio (SINR) constraints at the CUs and the maximum transmit power constraint at the BS. We present efficient algorithms to solve the highly non-convex SINR-constrained CRB minimization problems, by using the techniques of alternating optimization and semi-definite relaxation. Numerical results show that the proposed design achieves lower estimation CRB than other benchmark schemes, and the sensing signal interference pre-cancellation is beneficial when the number of CUs is greater than one.