论文标题
双层堆叠铁电的一般理论
General Theory for Bilayer Stacking Ferroelectricity
论文作者
论文摘要
在本质上很少见的二维(2D)铁电体可以使高密度的非挥发记忆具有低能消耗。在这里,我们提出了一种双层堆叠铁电的理论(BSF),其中,具有不同旋转和翻译的两个相同2D材料的两个堆叠层表现出铁电性。通过执行系统的群体理论分析,我们发现了所有80层组(LGS)中所有可能的BSF,并发现有关双层中对称性的创建和歼灭的规则。我们的一般理论不仅可以解释所有以前的发现(包括滑动铁电性),而且还提供了新的观点。有趣的是,双层的电偏振的方向可能与单层完全不同。特别是,在正确堆叠两个中心对称非极性单层后,双层可以变成铁电。通过第一原理模拟,我们证明了通过堆叠通过堆叠将铁电性和多效性引入原型2D铁磁性中心对称材料CRI3。此外,我们发现双层CRI3中的平面外电化极化与平面电动极化相互关联,这表明可以通过应用平面电场来以确定性的方式来操纵面外极化。目前的BSF理论奠定了设计大量双层铁电的坚实基础,从而为基本研究和应用而设计了五颜六色的平台。
Two-dimensional (2D) ferroelectrics, which is rare in nature, enable high-density non-volatile memory with low energy consumption. Here, we propose a theory of bilayer stacking ferroelectricity (BSF), in which, two stacked layers of the same 2D material, with different rotation and translation, exhibits ferroelectricity. By performing systematic group theory analysis, we find out all the possible BSF in all the 80 layer groups (LGs) and discover the rules about the creation and annihilation of symmetries in the bilayer. Our general theory can not only explain all the previous findings (including sliding ferroelectricity), but also provide new perspective. Interestingly, the direction of the electric polarization of the bilayer could be totally different from that of the single layer. In particular, the bilayer could become ferroelectric after properly stacking two centrosymmetric non-polar monolayers. By means of first-principles simulations, we demonstrate that the ferroelectricity and thus multiferroicity can be introduced to the prototypical 2D ferromagnetic centrosymmetric material CrI3 by stacking. Furthermore, we find that the out-of-plane electric polarization in bilayer CrI3 is interlocked with the in-plane electric polarization, suggesting that the out-of-plane polarization can be manipulated in a deterministic way through the application of an in-plane electric field. The present BSF theory lays a solid foundation for designing a large number of bilayer ferroelectrics and thus colorful platforms for fundamental studies and applications.