论文标题
强大的增强森林和更丰富的深度层次结构
Robust Boosting Forests with Richer Deep Feature Hierarchy
论文作者
论文摘要
我们提出了将森林促进各种对抗性防御方法的强大变体,并将其应用于增强深神经网络的鲁棒性。我们保留深层网络体系结构,权重和中层特征,然后安装梯度增强森林以从深网的每一层中选择特征,并预测目标。为了训练每个决策树,我们提出了一个新颖的保守和贪婪的权衡,考虑到不太预测而不是纯粹的增益功能,因此是次优和保守的。我们积极增加树的深度,以弥补更多特征的拆分,在生长的树深度方面更加贪婪。我们在3D面部模型上提出了一项新任务,尽管与面部分析有关的安全性和隐私问题很大,但尚未仔细研究其鲁棒性。我们尝试了一种对纯卷积神经网络(CNN)面向形状估计器的简单攻击方法,使其脱颖而出,仅在无形的扰动中输出平均面部形状。我们的保守性绿色促进森林(CGBF)在面部地标数据集上显示出对对抗性攻击下的原始纯深度学习方法的巨大改善。
We propose a robust variant of boosting forest to the various adversarial defense methods, and apply it to enhance the robustness of the deep neural network. We retain the deep network architecture, weights, and middle layer features, then install gradient boosting forest to select the features from each layer of the deep network, and predict the target. For training each decision tree, we propose a novel conservative and greedy trade-off, with consideration for less misprediction instead of pure gain functions, therefore being suboptimal and conservative. We actively increase tree depth to remedy the accuracy with splits in more features, being more greedy in growing tree depth. We propose a new task on 3D face model, whose robustness has not been carefully studied, despite the great security and privacy concerns related to face analytics. We tried a simple attack method on a pure convolutional neural network (CNN) face shape estimator, making it degenerate to only output average face shape with invisible perturbation. Our conservative-greedy boosting forest (CGBF) on face landmark datasets showed a great improvement over original pure deep learning methods under the adversarial attacks.