论文标题
没有部分theta函数的零的域
A domain free of the zeros of the partial theta function
论文作者
论文摘要
我们证明,对于$ q \ in(0,1)$,部分theta函数$θ(q,x):= \ sum _ {j = 0}^{\ infty} q^{j(j+1)/2} x^j $在封闭的域中没有ZEROS中的ZEROS, re} $ x \ leq 0 \} \ cap \ {| $ {\ rm im} $ x | \ leq 3/\ sqrt {2} \} \} \} \ subset \ mathbb {c} $,没有真正的零零$ \ geq -5 $。
We prove that for $q\in (0,1)$, the partial theta function $θ(q,x):=\sum _{j=0}^{\infty}q^{j(j+1)/2}x^j$ has no zeros in the closed domain $\{ \{ |x|\leq 3\} \cap \{${\rm Re}$x\leq 0\} \cap \{ |${\rm Im}$x|\leq 3/\sqrt{2}\} \} \subset \mathbb{C}$ and no real zeros $\geq -5$.