论文标题

Gelfand- Graev functor和Quantum Aggine Schur- weyl二元性

Gelfand--Graev functor and quantum affine Schur--Weyl duality

论文作者

Gao, Fan, Gurevich, Nadya, Karasiewicz, Edmund

论文摘要

我们阐明了Gelfand(Graev模块的中央覆盖物)之间的关系,Euler-poincaré的Arnold- brieskorn歧管的多项式和量子仿射Schur- weyl二元性。这三个对象及其关系由Weyl群的置换表示决定。 具体来说,我们的主要结果表明,对于$ \ mathrm {gl}(r)的某些封面,gelfand-graev functor与量子仿射schur - weyl二元性有关。因此,Gelfand的Iwahori固定部分的通勤代数 - Graev代表是量子群的商。

We explicate relations among the Gelfand--Graev modules for central covers, the Euler--Poincaré polynomial of the Arnold--Brieskorn manifold, and the quantum affine Schur--Weyl duality. These three objects and their relations are dictated by a permutation representation of the Weyl group. Specifically, our main result shows that for certain covers of $\mathrm{GL}(r)$ the Gelfand--Graev functor is related to quantum affine Schur--Weyl duality. Consequently, the commuting algebra of the Iwahori-fixed part of the Gelfand--Graev representation is the quotient of a quantum group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源