论文标题

通过微分方程对晶格相关函数的非扰动计算

Non-perturbative computation of lattice correlation functions by differential equations

论文作者

Gasparotto, Federico, Rapakoulias, Andreas, Weinzierl, Stefan

论文摘要

我们表明,在扰动计算的背景下开发的方法可以转移到非扰动计算中。我们证明,晶格上的相关函数可以使用微分方程的方法计算,并补充了扭曲的共同体学技术。我们得出与耦合变化的微分方程,或者 - 更普遍地与动作的参数。已经简单的示例表明,相对于耦合的微分方程在零耦合时具有基本奇异性,而在无限耦合时具有常规的奇异性。零耦合时微分方程的性能可用于证明扰动序列只是一个渐近系列。

We show that methods developed in the context of perturbative calculations can be transferred to non-perturbative calculations. We demonstrate that correlation functions on the lattice can be computed with the method of differential equations, supplemented with techniques from twisted cohomology. We derive differential equations for the variation with the coupling or -- more generally -- with the parameters of the action. Already simple examples show that the differential equation with respect to the coupling has an essential singularity at zero coupling and a regular singularity at infinite coupling. The properties of the differential equation at zero coupling can be used to prove that the perturbative series is only an asymptotic series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源