论文标题

部分可观测时空混沌系统的无模型预测

Wellposedness of nonlinear flows on manifolds of bounded geometry

论文作者

Bahuaud, Eric, Guenther, Christine, Isenberg, James, Mazzeo, Rafe

论文摘要

我们提供简单的条件,以确保强烈的椭圆运算符$ l $在限制几何形状的任意完整多种形态上在Hölder空间上产生分析性半群。这是通过确定$ l $是“部门”的等效属性来完成的,该条件指定了分解$(λi -l)^{ - 1} $的衰减为$λ$从$ l $的HölderSpectrum偏离。作为一个步骤,如果$λ$足够大,我们证明了这种分解的存在,并且在这类歧管上,使用半经典伪模分子的几何微局部版本。然后,我们获得的$ l $和$ e^{ - tl} $的属性可以用来证明广泛的非线性流量的良好性。我们通过证明与环境阻塞量张量相关的流量的hölder空间上的良好性来说明这一点。

We present simple conditions which ensure that a strongly elliptic operator $L$ generates an analytic semigroup on Hölder spaces on an arbitrary complete manifold of bounded geometry. This is done by establishing the equivalent property that $L$ is "sectorial", a condition that specifies the decay of the resolvent $(λI - L)^{-1}$ as $λ$ diverges from the Hölder spectrum of $L$. As one step, we prove existence of this resolvent if $λ$ is sufficiently large, and on this general class of manifolds, use a geometric microlocal version of the semiclassical pseudodifferential calculus. The properties of $L$ and $e^{-tL}$ we obtain can then be used to prove wellposedness of a wide class of nonlinear flows. We illustrate this by proving wellposedness on Hölder spaces of the flow associated to the ambient obstruction tensor on complete manifolds of bounded geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源