论文标题
部分可观测时空混沌系统的无模型预测
Facial Action Unit Detection and Intensity Estimation from Self-supervised Representation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
As a fine-grained and local expression behavior measurement, facial action unit (FAU) analysis (e.g., detection and intensity estimation) has been documented for its time-consuming, labor-intensive, and error-prone annotation. Thus a long-standing challenge of FAU analysis arises from the data scarcity of manual annotations, limiting the generalization ability of trained models to a large extent. Amounts of previous works have made efforts to alleviate this issue via semi/weakly supervised methods and extra auxiliary information. However, these methods still require domain knowledge and have not yet avoided the high dependency on data annotation. This paper introduces a robust facial representation model MAE-Face for AU analysis. Using masked autoencoding as the self-supervised pre-training approach, MAE-Face first learns a high-capacity model from a feasible collection of face images without additional data annotations. Then after being fine-tuned on AU datasets, MAE-Face exhibits convincing performance for both AU detection and AU intensity estimation, achieving a new state-of-the-art on nearly all the evaluation results. Further investigation shows that MAE-Face achieves decent performance even when fine-tuned on only 1\% of the AU training set, strongly proving its robustness and generalization performance.