论文标题
部分可观测时空混沌系统的无模型预测
On the kernel of the $(κ,a)$-generalized Fourier transform
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
For the kernel $B_{κ,a}(x,y)$ of the $(κ,a)$-generalized Fourier transform $\mathcal{F}_{κ,a}$, acting in $L^{2}(\mathbb{R}^{d})$ with the weight $|x|^{a-2}v_κ(x)$, where $v_κ$ is the Dunkl weight, we study the important question of when $\|B_{κ,a}\|_{\infty}=B_{κ,a}(0,0)=1$. The positive answer was known for $d\ge 2$ and $\frac{2}{a}\in\mathbb{N}$. We investigate the case $d=1$ and $\frac{2}{a}\in\mathbb{N}$. Moreover, we give sufficient conditions on parameters for $\|B_{κ,a}\|_{\infty}>1$ to hold with $d\ge 1$ and any $a$. We also study the image of the Schwartz space under the $\mathcal{F}_{κ,a}$ transform. In particular, we obtain that $\mathcal{F}_{κ,a}(\mathcal{S}(\mathbb{R}^d))=\mathcal{S}(\mathbb{R}^d)$ only if $a=2$. Finally, extending the Dunkl transform, we introduce non-deformed transforms generated by $\mathcal{F}_{κ,a}$ and study their main properties.