论文标题

在Fano Kaehler-Irci Solitons的空间上的Weil-Petersson型公制

A Weil-Petersson Type Metric on the Space of Fano Kaehler-Ricci Solitons

论文作者

Cao, Huai-Dong, Sun, Xiaofeng, Zhang, Yingying

论文摘要

在本文中,我们在缩小Kaehler-Icci solitons的空间中定义了一个Weil-Petersson型度量,并在与Kaehler-Ricci Soliton指标的选择无关时,证明了它是必要且充分的条件。我们还表明,Weil-Petersson指标是Kaehler,当它在Kuranishi空间上定义了Fano Kaehler-Irci Solitons的小变形空间时。最后,我们建立了FanoKähler-Icci solitons的第一阶和二阶变形,并表明,从本质上讲,在变形Kaehler-Icci Solitons中,第一个有效术语导致Weil-Petersson指标。

In this paper we define a Weil-Petersson type metric on the space of shrinking Kaehler-Ricci solitons and prove a necessary and sufficient condition on when it is independent of the choices of Kaehler-Ricci soliton metrics. We also show that the Weil-Petersson metric is Kaehler when it defines a metric on the Kuranishi space of small deformations of Fano Kaehler-Ricci solitons. Finally, we establish the first and second order deformation of Fano Kähler-Ricci solitons and show that, essentially, the first effective term in deforming Kaehler-Ricci solitons leads to the Weil-Petersson metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源