论文标题

有效的几个射击学习用于Pixel-Presish手写文档布局分析

Efficient few-shot learning for pixel-precise handwritten document layout analysis

论文作者

De Nardin, Axel, Zottin, Silvia, Paier, Matteo, Foresti, Gian Luca, Colombi, Emanuela, Piciarelli, Claudio

论文摘要

布局分析是古代手写文档分析中至关重要的任务,并且代表了简化后续任务(例如光学特征识别和自动转录)的基本步骤。但是,用于解决此问题的许多方法都取决于完全监督的学习范式。尽管这些系统在此任务上实现了非常好的性能,但缺点是整个培训集的Pixel-Presise文本标签是一个非常耗时的过程,这使得这种类型的信息在现实世界中很少获得。在本文中,我们通过提出一个有效的几次学习框架来解决此问题,该框架可以实现与当前最新监督的Diva-Hisdb数据集中完全监督的方法相当的性能。

Layout analysis is a task of uttermost importance in ancient handwritten document analysis and represents a fundamental step toward the simplification of subsequent tasks such as optical character recognition and automatic transcription. However, many of the approaches adopted to solve this problem rely on a fully supervised learning paradigm. While these systems achieve very good performance on this task, the drawback is that pixel-precise text labeling of the entire training set is a very time-consuming process, which makes this type of information rarely available in a real-world scenario. In the present paper, we address this problem by proposing an efficient few-shot learning framework that achieves performances comparable to current state-of-the-art fully supervised methods on the publicly available DIVA-HisDB dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源