论文标题

自动注意力:在用户行为建模中注意的自动现场对选择

AutoAttention: Automatic Field Pair Selection for Attention in User Behavior Modeling

论文作者

Zheng, Zuowu, Gao, Xiaofeng, Pan, Junwei, Luo, Qi, Chen, Guihai, Liu, Dapeng, Jiang, Jie

论文摘要

在点击率(CTR)预测模型中,用户的兴趣通常根据其历史行为表示为固定长度向量。最近,提出了几种方法来学习每个用户行为的细心重量并进行加权总和。但是,这些方法仅手动从目标项目端手动选择几个字段,以查询与行为相互作用,忽略其他目标项目字段以及用户和上下文字段。直接包括所有这些领域的注意力可能会引入噪声并恶化性能。在本文中,我们提出了一个名为AutoTostention的新颖模型,其中包括所有项目/用户/上下文侧字段作为查询,并为行为字段和查询字段之间的每个字段对分配了可学习的权重。通过这些可学习的权重在这些现场对上进行修剪会导致自动野外选择,以识别和删除嘈杂的野外对。尽管包括更多字段,但由于使用了简单的注意功能和现场对选择,自动注意力的计算成本仍然很低。公共数据集和腾讯生产数据集的广泛实验证明了拟议方法的有效性。

In Click-through rate (CTR) prediction models, a user's interest is usually represented as a fixed-length vector based on her history behaviors. Recently, several methods are proposed to learn an attentive weight for each user behavior and conduct weighted sum pooling. However, these methods only manually select several fields from the target item side as the query to interact with the behaviors, neglecting the other target item fields, as well as user and context fields. Directly including all these fields in the attention may introduce noise and deteriorate the performance. In this paper, we propose a novel model named AutoAttention, which includes all item/user/context side fields as the query, and assigns a learnable weight for each field pair between behavior fields and query fields. Pruning on these field pairs via these learnable weights lead to automatic field pair selection, so as to identify and remove noisy field pairs. Though including more fields, the computation cost of AutoAttention is still low due to using a simple attention function and field pair selection. Extensive experiments on the public dataset and Tencent's production dataset demonstrate the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源