论文标题
部分可观测时空混沌系统的无模型预测
Graphs with many independent vertex cuts
论文作者
论文摘要
周期是唯一的$ 2 $连接的图形,其中任何两个非附属顶点形成顶点切割。我们通过证明每个整数$ k \ ge 3 $都存在一个唯一的图形$ g $,以满足以下条件:(1)$ g $是$ k $ - 连接; (2)$ g $的独立数大于$ k; $(3)任何独立的基数$ k $都是$ g的顶点削减。$该结果的边缘版本不满。我们在替换外围独立集时也考虑了问题。
The cycles are the only $2$-connected graphs in which any two nonadjacent vertices form a vertex cut. We generalize this fact by proving that for every integer $k\ge 3$ there exists a unique graph $G$ satisfying the following conditions: (1) $G$ is $k$-connected; (2) the independence number of $G$ is greater than $k;$ (3) any independent set of cardinality $k$ is a vertex cut of $G.$ The edge version of this result does not hold. We also consider the problem when replacing independent sets by the periphery.