论文标题

六角形金色平铺的紧密结合模型中的受限状态

Confined states in the tight-binding model on the hexagonal golden-mean tiling

论文作者

Matsubara, Toranosuke, Koga, Akihisa, Coates, Sam

论文摘要

我们在二维六边形金色平式瓷砖上使用两个不同的跳跃$(t_l,t_s)$研究了紧密结合模型,并以$ e = 0 $的限制性状态检查,其中$ e $是特征力。在此情况下发现的一些限制状态$ t_l = t_s $即使对于具有$ t_l \ neq t_s $的系统,它们的幅度会顺利更改。相比之下,其他状态不再是系统的特征状态,$ t_l \ neq t_s $。这可能意味着存在宏观变性状态,这些状态是系统的特征,具有$ t_l = t_s $,并且在热力学极限中的受限状态数中出现了不连续性。

We study the tight-binding model with two distinct hoppings $(t_L, t_S)$ on the two-dimensional hexagonal golden-mean tiling and examine the confined states with $E=0$, where $E$ is the eigenenergy. Some confined states found in the case $t_L=t_S$ are exact eigenstates even for the system with $t_L \neq t_S$, where their amplitudes are smoothly changed. By contrast, the other states are no longer eigenstates of the system with $t_L \neq t_S$. This may imply the existence of macroscopically degenerate states which are characteristic of the system with $t_L=t_S$, and that a discontinuity appears in the number of the confined states in the thermodynamic limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源