论文标题
依赖性事项:识别经济网络中领带形成驱动因素的统计模型
Dependence matters: Statistical models to identify the drivers of tie formation in economic networks
论文作者
论文摘要
网络在组织,贸易和许多其他领域的经济研究中无处不在。但是,尽管经济理论广泛考虑了网络,但尚未出现过经验建模的一般框架。因此,为此,我们引入了两个不同的统计模型 - 指数随机图模型(ERGM)和添加剂和乘法效应网络模型(AME)。两种模型类都可以说明观察值之间的网络相互依赖性,但在它们的过程中有所不同。 ERGM允许人们明确指定和测试特定网络结构的影响,如果人们对估计内源网络效应感兴趣,则自然选择。相比之下,AME通过引入特定于参与者的潜在变量来捕获这些效果,从而影响其形成关系的倾向。如果研究人员有兴趣捕获外源协变量对领带形成的影响,而没有对内源性依赖性结构的特定理论,则这使后者成为了一个不错的选择。在介绍了两个模型类后,我们通过现实世界的应用将其展示给来自国际武器贸易和外汇活动的网络。我们进一步提供完整的复制材料,以促进经验经济研究中采用这些方法。
Networks are ubiquitous in economic research on organizations, trade, and many other areas. However, while economic theory extensively considers networks, no general framework for their empirical modeling has yet emerged. We thus introduce two different statistical models for this purpose -- the Exponential Random Graph Model (ERGM) and the Additive and Multiplicative Effects network model (AME). Both model classes can account for network interdependencies between observations, but differ in how they do so. The ERGM allows one to explicitly specify and test the influence of particular network structures, making it a natural choice if one is substantively interested in estimating endogenous network effects. In contrast, AME captures these effects by introducing actor-specific latent variables affecting their propensity to form ties. This makes the latter a good choice if the researcher is interested in capturing the effect of exogenous covariates on tie formation without having a specific theory on the endogenous dependence structures at play. After introducing the two model classes, we showcase them through real-world applications to networks stemming from international arms trade and foreign exchange activity. We further provide full replication materials to facilitate the adoption of these methods in empirical economic research.