论文标题
用U(1)对称性的多体系统中的充电运输,信息争夺和量子操作员连接
Charge transport, information scrambling and quantum operator-coherence in a many-body system with U(1) symmetry
论文作者
论文摘要
在这项工作中,我们在带有U(1)对称性的量子多体系统中为耦合,电荷和操作器动力学得出了精确的流体动力描述。使用电荷保守的复杂的布朗SYK模型中的新兴对称性,我们将模型中的操作员动力学映射到SU(4)自旋链的假想时间动力学。我们利用新兴的SU(4)描述证明,即使在平衡障碍之后,U(1)对称性也会导致量子含量持续,与没有对称性的模型形成鲜明对比。与此属性一致,我们在大限制中写下了一个超时有序相关器(OTOC)的“限制” fokker-Planck方程,该方程允许在全球操作员空间的不一致领域中严格地描述经典的概率描述。然后,我们利用此功能来描述OTOC,以Fisher-Kolmogorov-Petrovsky-Piskun(FKPP)方程式来描述OTOC,该方程将操作员与电荷相关联,并且在所有时间尺度上都是有效的,并且对于任意充电密度概况。获得的耦合方程属于一类模型,也用于描述嵌入扩散培养基中的细菌的种群动力学。我们模拟它们以在非均匀电荷配置的背景下探索操作员,这表明电荷传输可以强烈影响运算符的动态,包括与电荷没有重叠的操作员。
In this work, we derive an exact hydrodynamical description for the coupled, charge and operator dynamics, in a quantum many-body system with U(1) symmetry. Using an emergent symmetry in the complex Brownian SYK model with charge conservation, we map the operator dynamics in the model to the imaginary-time dynamics of an SU(4) spin-chain. We utilize the emergent SU(4) description to demonstrate that the U(1) symmetry causes quantum-coherence to persist even after disorder-averaging, in sharp contrast to models without symmetries. In line with this property, we write down a 'restricted' Fokker-Planck equation for the out-of-time ordered correlator (OTOC) in the large-$N$ limit, which permits a classical probability description strictly in the incoherent sector of the global operator-space. We then exploit this feature to describe the OTOC in terms of a Fisher-Kolmogorov-Petrovsky-Piskun (FKPP)-equation which couples the operator with the charge and is valid at all time-scales and for arbitrary charge-density profiles. The coupled equations obtained belong to a class of models also used to describe the population dynamics of bacteria embedded in a diffusive media. We simulate them to explore operator-dynamics in a background of non-uniform charge configuration, which reveals that the charge transport can strongly affect dynamics of operators, including those that have no overlap with the charge.