论文标题
从空间对称性中产生与理论无关的随机性产生
Theory-independent randomness generation from spatial symmetries
论文作者
论文摘要
我们表征物理系统对空间旋转的响应如何限制可能观察到的事件的概率。从基本的角度来看,我们表明我们方案中的量子相关性集可以单独源自旋转对称性,而无需假设量子物理。这表明,量子理论的重要预测可以从空间的结构中得出,这表明可以将半脱位的情景用于阐明物理基础。从实际的角度来看,这些结果使我们能够基于空间对称性的破坏,为生成安全的随机数引入半设备的协议。虽然实验实现将依赖量子物理学,但安全分析和提取的随机性的数量仅由理论独立,并且仅由观察到的相关性得到认证。也就是说,我们的协议依赖于物理上有意义的假设:与自旋的无关理论观念结合。
We characterize how the response of physical systems to spatial rotations constrains the probabilities of events that may be observed. From a foundational point of view, we show that the set of quantum correlations in our scenarios can be derived from rotational symmetry alone, without assuming quantum physics. This shows that important predictions of quantum theory can be derived from the structure of space, demonstrating that semi-device-independent scenarios can be utilized to shed light on the foundations of physics. From a practical perspective, these results allow us to introduce semi-device-independent protocols for the generation of secure random numbers based on the breaking of spatial symmetries. While experimental implementations will rely on quantum physics, the security analysis and the amount of extracted randomness is theory-independent and certified by the observed correlations only. That is, our protocols rely on a physically meaningful assumption: a bound on a theory-independent notion of spin.